CHARACTERIZATION OF THE SR POLARIZATION STATE AT SPEAR3

Chunlei Li (East China University of Science and Technology)
Jeff Corbett (SLAC) and Toshiyuki Mitsuhashi (KEK)

Abstract

The polarization state of synchrotron radiation can be characterized as a function of vertical observation angle and compared with theory.

Schwinger’s equations provide the theory for the SR angular- and spectrum distribution.

With a polarizer, QWP and power meter driven by an automated system the Stokes parameters were measured and beam polarization ellipse evaluated.

Agreement between measurement and theory is good when the effect of a reflective metal mirror is taken into account.

Visible light diagnostic beamline

Unfocused SR

Beam coherence measurements

SR line end-station

Si substrate

Al mirror

SR Beam

81°

3.25°

6.25°

Rhodium pickoff mirror (81° incidence angle)

S- and P-wave reflection at mirror

Wavelength (nm)

Intensities Characterize Polarization State

Stokes parameters

$S_0 = E_0^x + E_0^y = I_{00} - I_{135}$

$S_1 = E_0^x - E_0^y = I_{00} - I_{90}$

$S_2 = 2E_0^x E_0^y \cos(\delta) = I_{45} - I_{135}$

$S_3 = 2E_0^x E_0^y \sin(\delta) = I_{45}^\text{PWP} - I_{135}^\text{QWP}$

δ is the relative phase between E_x and E_y

Images:

- Beam polarization measurements at 532nm
- SR emission and reflection at pick-off mirror

Summary

- Unfocused SR in diagnostic beam line
- Measured the SR beam polarization state
- Field attenuation and phase shift at Rh mirror
- Compare with SR theory – agreement is good
- Calculate Stokes parameters
- Calculate polarization ellipse