Status of the Intra-bunch Feedback at J-PARC Main Ring

Takeshi Toyama
KEK / J-PARC

IBIC2015, Sep 12-17 2015, Melbourne Australia
Collaborators

Keigo Nakamura
Kyoto University

Makoto Tobiyama, Masashi Okada,
Yong Ho Chin, Takashi Obina, Tadashi Koseki
KEK

Yoshihiro Shobuda
JAEA
Japan Proton Accelerator Research Complex

Tokai, Ibaraki

LINAC
40mA (50mA)
3 GeV RCS
500 kW (1MW) ← operation

30 GeV MR
350kW (750kW) ← one shot

ν detector

Kamioka

295 km

Kamioka

MLF

Hadron hall

ν detector
Outline

• Introduction
 – Upgrade history of the J-PARC MR transverse feedback

• Feedback during acceleration
 – Timing slip
 – Timing matching
 – Initial result

• Summary and prospect
J-PARC MR parameters

- Circumference: 1567.5 m
- Injection Energy: 3 GeV
- Extraction Energy: 30 GeV
- Revolution at injection: 5.384us (185.7kHz) RF 1.67MHz
 at extraction: 5.231us (191.2kHz) RF 1.72MHz
- Harmonic number: 9
- Repetition time for fast extraction: 2.5 s

At high beam power
- Collective motion causes beam losses, other than non-linear resonances (due to space charge).
Two obstacles

(1) Injection error & succeeding collective motion

\[N_B \sim 1.67 \times 10^{13} \text{ ppp} \]

2 bunches

\[\xi_x \sim -7.5 \]

\[\xi_y \sim -7.0 \]

In the image, the circulating beam is kicked by the kicker pulse-tail and reflection.
(2) Instability during acceleration

Instabilities has been observed at the beam power 230kW, with chromaticity $\xi_y=-0.3$. We avoid this instabilities by tuning chromaticity $\xi_y=-3.2$.

Keigo Nakamura, et al., IPAC2014, Dresden, Germany
B x B feedback

Bunch-by-bunch (BxB) feedback
slice ~ 590 ns

Kick

Beam bunch
Intra-bunch feedback

Intra-bunch feedback slice ~ 10 nsec

Kick

Beam bunch

FIR filter in iGp12
For the horizontal (x) plane

- Beam
- Stripline BPM
- Stripline kicker
- Oscilloscope
- DAC+
- DAC-
- ADC+
- ADC-
- DC offset
- RF clock
- x64
- x2
- Revolution clk
- Revolution clk
- Power Amp.
- Injection timing

Same as the vertical (y) plane

DC offset

RF clock

x64

Revolution clk

Revolution clk

Power Amp.

Injection timing

Attenuator

iGp12

DAC+

DAC-

Attenuator

x2

Revolution clk

RF clock

x64

Revolution clk

Power Amp.

Injection timing

Same as the vertical (y) plane
For the horizontal (x) plane

Beam

Hybrid 100KHz-200MHz

Stripline BPM

Stripline kicker

DC offset

RF clock

revolution clk

trig. for timing table

 Oscilloscope

iGp12

Power Amp.

100KHz-100MHz

Attenuator

Same as the vertical (y) plane
Trigger for timing table

iGp12 for y

iGp12 for x

2015/01/13
3 GeV injection flat bottom
Oscillation of one bunch slice

Without FB

Without FB

BxB FB on

Bunch signal every 5 turns

Without FB

BxB on

+ intra-bunch FB on

+ intra-B on
Timing slip

Parameters are changing during acceleration up to 30 GeV

Observing the beam and the RF kick simultaneously
Example of revolution frequency

\[f_{\text{rev}} = 185.7 \text{kHz} \rightarrow 191.2 \text{kHz} \]
Example of synchronous phase

We need rapid parameter optimization
Sampled by iGp12 \leftrightarrow Compare \rightarrow signals on the stripline kicker

$\Delta \phi_B(t)$ beam transit time

Stripline kicker = directional coupler
can observe
beam signal
RF power from the feedback system

Σ – signal of stripline kicker

Sampled signal @iGp12

marker @slice#5

marker @slice#570
Unit in oscilloscope (kicker) = \textit{time (sec)}

Referencing the marker #5, 570 scaling and shift

Unit in iGp12 RF CLK x 64
Unit in oscilloscope (kicker) = **time (sec)**

Referencing the marker #5, 570
scaling and shift

Unit in iGp12
RF CLK x 64
Unit in oscilloscope (kicker) = \textbf{time (sec)}

Referencing the marker #5, 570
scaling and shift

Unit in iGp12
RF CLK x 64
Unit in oscilloscope (kicker) = time (sec)

Referencing the marker #5, 570 scaling and shift

Unit in iGp12 RF CLK x 64
Unit in oscilloscope (kicker) = time (sec)

Referencing the marker #5, 570 scaling and shift

Unit in iGp12 RF CLK x 64
Unit in oscilloscope (kicker) = time (sec)

Referencing the marker #5, 570 scaling and shift

Unit in iGp12
RF CLK x 64
Unit in oscilloscope (kicker) = time (sec)

Referencing the marker #5, 570 scaling and shift

Finally superpose the beam signal by shifting horizontally the amount of shift = the delay time that we want
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5

Time from P1 (sec)

f rev
Timing CNTL by preset table

External trigger initiates each "STATE"
STATE specifies the delay, filter gain, phase, # of tap

a function of "iGp12"
Timing CNTL by preset table

STATE 1 2 3 4 5
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5

Time from P1 (sec)

f rev

188000
187500
187000
186500
186000
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5
Timing CNTL by preset table

2.48 sec cycle

STATE 1 2 3 4 5 ……

Kinetic Energy [GeV]

Time from P1 (sec)

\[f_{rev} \]
Timing CNTL by preset table

STATE 1 2 3 4 5 ...
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5

f [rev]

Time from P1 (sec)
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5

Time from P1 (sec)
Timing CNTL by preset table

2.48 sec cycle

STATE 1 2 3 4 5

Kinetic Energy [GeV]

Time from P1 (sec)
Timing CNTL by preset table

2.48 sec cycle

STATE 1 2 3 4 5
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy (GeV)

STATE 1 2 3 4 5
iGp12 parameter settings

FIR filter parameters

Injection flat bottom

This trial

Acceleration

FIR filter parameters
2015. 7. 1
2 bunches, ~80kW, ~4.2×10^{13} p

BEFORE

shot513300

Δx

Δy

ξ_x \sim -5.9
ξ_y \sim -5.2

P1+100ms P2

Acceleration

STATE 1
STATE 2
STATE 3
STATE 4
STATE 5
STATE ...

20 ms/div
BEFORE

shot513300

\(\xi_x \sim -5.9 \)

\(\xi_y \sim -5.2 \)

AFTER

shot513301

Stabilized

only by switching on

STATE 2

\(\Delta x \)

\(\Delta y \)

P1+100ms P2

Acceleration

2015. 7. 1
2 bunches, ~80kW, ~4.2\times10^{13} \) p
Summary

✓ Transverse intra-bunch feedback during acceleration period was successful upto P2 + ~80 ms.
 • Horizontal instability at the beginning of acceleration was suppressed.
 • Stable parameters (delay, gain, frequency) are obtained

Prospect

➢ Further parameter optimization for further accel. period
➢ Stability check both with experiments and simulations
➢ Contribute high beam intensity upgrade